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We model the evolution of the concentration field of macromolecules in a symmetric field-
flow fractionation (FFF) channel by a one-dimensional advection–diffusion equation. The
coefficients are precisely determined from the fluid dynamics. This model gives quantitative
predictions of the time of elution of the molecules and the width in time of the concentration
pulse. The model is rigorously supported by centre manifold theory. Errors of the derived
model are quantified for improved predictions if necessary. The advection–diffusion equation
is used to find that the optimal condition in a symmetric FFF for the separation of two species
of molecules with similar diffusivities involves a high rate of cross-flow.

1. Introduction

Consider the transport of some contaminant molecules in the fluid flow of
a symmetric field-flow fractionation (FFF) channel as analysed by Giddings et al.
(e.g., [5,13]) and sketched in figure 1. The two horizontal parallel plates above and
below the channel are not permeable to the contaminant molecules but allow for the
cross-flow of fluid. This cross-flow distributes the contaminant preferentially to the
lower side of the channel as shown in figure 2. It is this cross-flow and asymmetric
distribution of contaminant concentration c(x, y, t) that creates a differential advection
of different molecular species and renders the problem interesting.

Using techniques based upon centre manifold theory [10], from the continuum
equations (section 2) we deduce that a model for the contaminant distribution in the
channel is the advection–diffusion equation

∂C

∂t
= −U ∂C

∂x
+D

∂2C

∂x2 , (1)

where t denotes time, x measures distance downstream along the channel, and
C(x, t) = c(x, 0, t) is the concentration of the contaminant measured along the lower
plate (the so-called accumulating wall). We derive expressions for the effective advec-
tion velocity U as it predominantly determines the time of efflux of the contaminant
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Figure 1. Side view of symmetric field-flow fractionation (FFF) channel.

out across the end of the channel, and the effective diffusivity D as it determines how
wide the contaminant spreads by the time it reaches the end of the channel: in a useful
parameter regime (section 4)

U ≈ 6uκ
v0b

, D ≈ 72u 2κ3

v4
0b

2
, (2)

where κ is the molecular diffusivity, u is the mean along-channel velocity, b is the
channel height, and v0 is the cross-flow velocity. The term D∂2C/∂x2 models the
so-called “zone broadening effects” discussed by Litzen and others [6,13]. We also
quantify the two sources of errors in the model by

• estimating the time it takes for initial transients to die out and the model to become
valid (section 3);

• determining higher-order corrections to the advection–diffusion model (section 4).

This model and its errors may be rigorously justified as discussed in other applications
of centre manifold theory to shear dispersion by Mercer, Roberts and Watt [8–10,15,16].

Field-flow fractionation channels are used to separate species of contaminant
molecules with different diffusivities. In section 5 we use model (1) to identify that
FFF separates molecular species most efficiently for relatively high cross-flow: up to

v0 ≈ 63/4

√
uκ

b
. (3)

Consequently, in describing the governing equations in section 2 we introduce a non-
dimensionalisation appropriate for such high cross-flow rates.

Further research in field-flow fractionation could model the dynamics of conta-
minant molecules in tubular channels [14], trapezoidal channels [6], or in asymmetric
FFF channels [7], as well as the dynamics of non-neutrally buoyant particles [13].
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Figure 2. Velocity field and an instantaneous concentration field near the accumulating lower plate (a)
when the concentration along the wall is given by the Gaussian (b). Fields correspond to the parameters

given in table 1.

2. Governing equations for symmetric FFF

Consider a symmetric FFF channel as discussed by Giddings et al. [5,13,17] and
depicted schematically in figure 1. The dynamics takes place between two flat plates
located at y = 0 and y = b. The fluid flow between the plates is driven predominantly
by a pressure gradient px parallel to the plates. Being that of a Newtonian fluid with
kinematic viscosity ν and density ρ, the velocity field is essentially that of parabolic
Poiseuille flow except that there is a cross-flow, of velocity −v0, from the upper
plate to the lower (if v0 is positive). The plates are permeable to the fluid in order
for this cross-flow to occur; but they are impermeable to the contaminant molecules.
Within the fluid the contaminant, of concentration c(x, y, t), is advected by the flow
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Table 1
Typical set of physical parameters for FFF and the consequent
parameters (in the second part) appearing in the analysis. The
data is for the Cow Pea Mosaic Virus [7, p. 464] in the FFF

channel of [14].

Parameter Value

Channel width b 0.05 cm
Kinematic viscosity ν 0.01 cm2/s
Mean longitudinal velocity u 0.1 cm/s
Cross-flow velocity v0 5× 10−4 cm/s
Molecular diffusivity κ 2× 10−7 cm2/s

Boundary layer (BL) thickness η 4× 10−4 cm
Cross-BL diffusion time τ 0.8 s
Longitudinal velocity in the BL u0 5× 10−3 cm/s
Downstream advection distance ξ 4× 10−3 cm
Schmidt number σ 5× 104

Cross-channel Peclet number V 125
Downstream Peclet number U 2.5× 104

Velocity ratio K 0.1

and diffuses with coefficient κ. In this section we non-dimensionalise the governing
differential equations, and also deduce the advecting fluid velocity field and confirm
that it is nearly parabolic.

For order of magnitude estimates of quantities we use the geometry of Wahlund
and Giddings [14]: the channel width is b ≈ 0.05 cm; the density of the fluid, water,
is ρ = 1 gm/cm3; and the kinematic viscosity ν ≈ 0.01 cm2/s. The fluid moves
so that on average it takes about 5–15 minutes to traverse about 50 cm so a typical
fluid velocity is u ≈ 0.1 cm/s and the driving pressure gradient must be roughly
px ≈ 5 gm/cm2/s2. The cross-flow is driven at rates v0 of order 5 × 10−4 cm/s.
When the contaminant molecules are the Cow Pea Mosaic Virus [7, p. 464], this
configuration gives parameters as listed in table 1. We base our analysis on this set
being typical of parameters of interest.

The equations governing the fluid motion are the Navier–Stokes and continuity
equations

∂q
∂t

+ q · ∇q =−1
ρ
∇p+ ν∇2q, (4)

∇ · q = 0 (5)

for the incompressible velocity field q = ui + vj and for the pressure p. The contam-
inant evolves according to the advection–diffusion equation

∂c

∂t
+ q · ∇c = κ∇2c (6)
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for the concentration field c. Herein we assume the molecules are neutrally buoyant,
though sedimentation effects [13] could be included in further work by modifying this
equation. Note that although we are concerned with the dynamics of the concentration
field c, we only seek the steady and x-independent fluid flow governed by the Navier–
Stokes and continuity equations. The boundary conditions on the plates are those of
no longitudinal flow,

u = 0, v = −v0, on y = 0 and y = b, (7)

and no flux of the contaminant through the plates,

v0c+ κ
∂c

∂y
= 0, on y = 0 and y = b. (8)

The above equations fully specify the dynamics of the fluid and the contaminant
molecules in the channel.

The non-dimensionalisation we adopt is chosen to reflect the fact that for the
regime of most effective separation of species (see section 5) the contaminant is con-
centrated near the lower plate due to the cross-flow. Introduce the following non-
dimensional variables denoted by stars:

x∗ =
x

ξ
, y∗ =

y

η
, t∗ =

t

τ
, u∗ =

u

u0
, v∗ =

v

v0
, p∗ =

p

ρv2
0

, (9)

where η = κ/v0 is the characteristic thickness of the distribution of contaminant in a
boundary layer near the lower plate, τ = η/v0 = η2/κ = κ/v2

0 is the cross-boundary
layer advection (η/v0) or, equivalently, the cross-boundary layer diffusion (η2/κ) time,

u0 = −1
2
∂p

∂x

bη

ρν
=

6u
V , (10)

is the characteristic downstream velocity in the boundary layer,

u = − 1
12
∂p

∂x

b2

ρν

is the mean speed of the Poiseuille flow in absence of the cross-flow, ξ = u0τ is
the downstream advection distance for the material in the boundary layer in a cross-
boundary layer diffusion time, and where

σ =
ν

κ
and V =

v0b

κ
(11)

are Schmidt and cross-channel Peclet numbers, respectively. Typical values of all these
quantities are recorded in table 1. In essence this scaling is that of the distribution of
contaminant molecules which typically are swept to be near the lower plate with the
upper plate “far away” at y = V . Substitute these scalings into the equations and omit
the distinguishing stars hereafter.
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The steady fluid flow is straightforward to determine. The y-momentum equation
determines that v = −1 everywhere. The x-momentum equation for the steady velocity
field u(y) becomes

V
2

[
1
σ

∂u

∂y
+
∂2u

∂y2

]
+ 1 = 0 (12)

with boundary conditions u(0) = u(V) = 0. The exact solution for this velocity
component is

u(y) =
2σ
V

[
V 1− e−y/σ

1− e−V/σ
− y
]

(13)

=

(
y − y2

V

)
+
y

σ

(
V
6
− y

2
+
y2

3V

)
+O

(
V2

σ2

)
. (14)

Observe, as used in earlier analyses (e.g., [14]), the downstream advection is nearly
parabolic; because the Schmidt number σ is so large the correction of O(V/σ) is
usually negligible.

The dynamics of the contaminant remains nontrivial. Under our nondimension-
alisation the advection–diffusion equation becomes

∂c

∂t
+ u

∂c

∂x
− ∂c

∂y
=
∂2c

∂y2 +K2 ∂
2c

∂x2 , (15)

where

K =
v0

u0
=
V
6
v0

u
=
V2

6U and U =
ub

κ
(16)

are, respectively, the velocity ratio and the downstream Peclet number based on the
mean longitudinal speed, see table 1. The non-dimensional boundary conditions for
the contaminant are

c+
∂c

∂y
= 0 at y = 0 and y = V. (17)

We analyse the dynamics described by this non-dimensional equation in this paper.
The main non-dimensional parameter V , appearing as the non-dimensional width of
the channel, is typically large, O(102), as we expect cross-flow advection to keep the
contaminant close to the bottom plate.

3. The dynamics approach a centre manifold

We justify the basis of model (1) using centre manifold theory [1] as adapted [8,
10] to the long thin geometry of the FFF channel. Under the action of the cross-
flow balanced by diffusion the contaminant distribution across the channel relaxes
quickly to an exponential distribution, c = C exp(−y). The shear velocity, different
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at different y, will smear this contaminant cloud out along the channel, while cross-
flow and diffusion continue to act to push the cross-channel distribution towards the
exponential distribution. The net effect is that the cloud has a concentration that is
slowly varying along the channel and is approximately exponential across it. Thus,
after the quick decay of cross-stream transients, we justify the relatively slow long-
term evolution of a contaminant cloud for which x derivatives of C, ∂nC/∂xn, are
small.

An initial “linear” picture of the dynamics is established by assuming that there
are no downstream variations. When downstream gradients are ignored, the relaxation
across the channel of the contaminant obeys the dynamics

∂c

∂t
− ∂c

∂y
=
∂2c

∂y2 , such that c+
∂c

∂y
= 0 on y = 0 and y = V. (18)

The neutral solution already mentioned is the exponential c0 = C exp(−y). The other
solutions, all decaying, are

cn = Cn

[
sin

(
nπ

V y
)
− 2nπ
V cos

(
nπ

V y
)]

exp

(
−y

2
+ λnt

)
, (19)

for n = 1, 2, . . . , where Cn are constant coefficients determined by the initial condition
such that

c(y, 0) =
∞∑
n=0

cn(y, 0) (20)

and the decay rate is

λn = −1
4
− n2π2

V2 . (21)

The slowest rate of decay to the centre manifold will be due to the n = 1
mode, although in many cases the second term in (21) is negligibly small as V is of
order 102. As an example, assume an initially uniform distribution of contaminant
across the channel, then from (20) expect that C1 ∝ exp(V/2). The relaxation process
is then dominated by the exponential decay of exp(V/2+λ1t) which effectively leads to
a relaxation time of roughly trel = −V/(2λ1). In dimensional form this cross-channel
relaxation time

trel ≈ 2Vτ = 200 s,

which agrees with the experimental observations of several minutes for macromolecules
given, for example, in [14, equation (30)]. Thus expect the decay to a low-dimensional
centre manifold to occur on this time scale.

The presence of downstream x-variations perturbs the contaminant pulse and re-
sults in its nontrivial long-time evolution. Centre manifold theory provides a powerful
rationale for modelling such evolution where the long-term behaviour is separated from
rapidly decaying transients. This was recognised by Coullet and Spiegel [4] and Carr
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and Muncaster [2,3]; see the draft review by Roberts [11] for an extensive discussion.
The application of the theory to dispersion in channels and pipes has been developed
by Roberts, Mercer and Watt [8–10,15,16]. Using the same techniques here, we seek
a solution to the governing equations in the form

c = h(C, y) such that
∂C

∂t
= g(C). (22)

Here the function h, C exp(−y) to leading approximation, describes the details of
the contaminant field throughout space and time in terms of the concentration C of
contaminant at the lower plate. Such a solution forms a model of the dynamics for two
reasons. First, the low-dimensional set of states described by h(C) are exponentially
attractive because of the action of cross-stream advection and diffusion as seen above.
Secondly, the associated function g models the effective advection and diffusion of the
contaminant in the horizontal by describing the evolution of C.

We find approximations to these functions by assuming that the concentration
field is slowly varying in the horizontal, that is, ∂/∂x is a small operator. Rigorously,
one would expand in the downstream wavenumber as introduced by Roberts [10].
Formally we express h and g in the following asymptotic series:

g ∼
∞∑
n=1

gn
∂nC

∂xn
and h ∼

∞∑
n=0

hn(y)
∂nC

∂xn
, (23)

where, for example, h0 = exp(−y) is the leading order approximation to the contam-
inant field, −g1 = U is the effective advection velocity, and g2 = D is an effective
horizontal diffusion coefficient. The advection–diffusion model (1) is obtained from
just the first two terms in the expansion for g. In dispersion problems, the asymp-
totic series in (23) typically converge in a sense discussed by Mercer, Roberts and
Watt [8,9,16].

To find the asymptotic expansions (23) we implement an iterative algorithm
(see [12]) in computer algebra (see appendix A). The results are assured to be accurate
by the approximation theorem of centre manifolds. Assume that some approximate
solution of the contaminant advection–diffusion equation (15) with boundary condi-
tions (17) is found in the centre manifold form (22); for example, the iteration is
initiated with the approximation c = C exp(−y) and g = 0. We wish to refine such
an approximation by finding a correction h′ to the shape of the centre manifold and a
correction g′ to the evolution thereon. As established by Roberts [12] the corrections
are found by solving

∂2h′

∂y2 +
∂h′

∂y
= R + g′ exp(−y), (24)

where R is the residual of (15), with boundary conditions

h′ +
∂h′

∂y
= 0 at y = 0 and y = V , and h′ = 0 at y = 0. (25)
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This last boundary condition reflects that we seek a solution parameterized by the
concentration at the lower plate: C(x, t) = c|y=0. The correction to the evolution g′

is chosen to satisfy the solvability condition∫ V
0

R + g′ exp(−y) dy = 0 (26)

in order to satisfy boundary conditions (25). Then the differential equation (24)
is solved to find h′. The iterations continue until the desired terms are found
in the asymptotic approximation to the centre manifold (23). Computer algebra,
such as the program listed in appendix A, easily performs all the algebraic de-
tails.

4. The detailed centre manifold model

Since all the algebraic machinations are handled by the computer algebra of
appendix A, here we just record and discuss the results. General results simplify
considerably in the typical case of large V when the contaminant is held near the
lower plate. Then higher order corrections are readily found.

From the computer algebra results, the concentration field (the centre manifold)
is to low order

c=Ce−y − ∂C

∂x

(
1− 1

σ

)[
2me−V − e−y

(
2me−V (y + 1)− y2

2
+
y2

V +
y3

3V

)]

− 1
12σ

∂C

∂x

e−yy2

V (V − y)2 +O
(
∂2C

∂x2 ,
V2

σ2

)
, (27)

where the evolution of the contaminant concentration along the bottom plate is de-
scribed to leading order by

∂C

∂t
=
∂C

∂x

[(
1− 1

σ

)(
1− 2m+

2
V

)
− V

6σ

]
+O

(
∂2C

∂x2 ,
V2

σ2

)
, (28)

where

m =
(
1− e−V

)−1 ∼
{

1 as V → ∞,

1/V + 1/2 as V → 0.
(29)

The order of error notation O(α,β) is used to denote errors O(α) +O(β).
Since the typical cross-channel Peclet number V is of order 102 we take m = 1

in presenting further detailed results (for completeness we present results for weak
and moderate cross-flows in appendix B). The dominant error in this approximation
is O(e−V ) and so expect it to be acceptable for V greater than about 6. Then (27)
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simplifies to

c=Ce−y +
∂C

∂x
y2
[(

1− 1
σ

)(
3 + y

3V − 1
2

)
− (V − y)2

12Vσ

]
e−y

+O
(
∂2C

∂x2 ,
V2

σ2 , e−V
)
. (30)

This shows the predominantly exponential distribution of the contaminant as advec-
tion towards the lower plate by the cross-flow is counter-balanced by diffusion. The
exponential distribution is modified by the interaction of the shear flow and the along-
channel spatial gradients of the contaminant as given by the second term in (30) and
shown in figure 2. The above expressions give the details of the concentration field
parameterized by its value C(x, t) = c|y=0 at the lower plate.

The associated advection–diffusion equation is (1) with coefficients

U =

(
1− 2
V

)
+

1
σ

(
V
6
− 1 +

2
V

)
+O

(
V2

σ2 , e−V
)

, (31)

D =

(
K2 + 2− 20

V +
56
V2

)
+

2(V − 8)
3σ

(
1− 12
V +

42
V2

)
+O

(
V2

σ2 , e−V
)

(32)

giving the effective advection speed and dispersion coefficient. The crudest approx-
imation, but useful over a reasonable parameter regime, is that U ≈ 1 and D ≈ 2,
leading to the dimensional expressions given in section 1.

Running the computer algebra program to higher order in spatial gradients we
find that the dynamics of the dispersion is governed by the extended evolution equation

∂C

∂t
= −U ∂C

∂x
+D

∂2C

∂x2 +E
∂3C

∂x3 + F
∂4C

∂x4 +O
(
∂5C

∂x5

)
, (33)

where the coefficients of the third and fourth order derivatives are

E =−4

(
5− 102

V +
744
V2 −

1936
V3

)
− 2
σ

(
5V − 170 +

2220
V − 13408

V2 +
31856
V3

)
+O

(
V2

σ2 , e−V
)

, (34)

F = 16

(
22− 725

V +
9480
V2 −

58292
V3 +

142168
V4

)
+

16
3σ

(
44V − 2175 +

44145
V − 464560

V2 +
2549556
V3 − 5856960

V4

)
+O

(
V2

σ2 , e−V
)
. (35)

The ∂3
x term in (33) with coefficient E governs the skewness of the predictions of

the model by modifying the effective advection speed of various spatial modes. The
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∂4
x term with coefficient F affects the decay of the spatial modes. Note that F is

positive for at least large enough V and σ – a forth order model may thus be unstable
for short enough spatial modes: approximately the fourth order model is unstable for
along channel non-dimensional wavenumbers |k| > 1/(4

√
11). Thus although the

third-order term may be used to improve predictions of the advection–diffusion model,
the fourth-order term should be limited to helping estimate errors in the predictions.

5. Species separate best at high cross-flow

The aim of field-flow fractionation is to separate as far as possible two or more
different species of contaminant molecules. Different contaminants are characterized
by different diffusivities, κj say. A contaminant with lower diffusivity will be pushed
closer to the lower plate by the cross-flow. Consequently, its effective advection speed
along the channel will be lower. Thus one collects a contaminant with higher diffusivity
at the exit before a contaminant with lower diffusivity. Here we identify the operating
regime when the separation is most effective between two species of nearly the same
diffusivity.

Consider the advection–diffusion predicted by model (1) with different species
identified by the subscript j. In the non-dimensional analysis this leads to different
characteristic scales:

τj =
κj

v2
0

, ξ = u0jτj =
6uκ2

j

v3
0b

, Vj =
v0b

κj
, σj =

ν

κj
. (36)

Thus the advection–diffusion model (1) for the jth species has dimensional coefficients

Uj = u0jU (Vj), Dj =
ξ2
j

τj
D(Vj), (37)

from the leading term in each of (31), (32) upon neglecting terms of order Vj/σj . In
a channel of fixed length L the approximate times of efflux are

Tj =
L

Uj
=

L

u0jU (Vj)
=

L

6u
Vj

U (Vj)
. (38)

Then the time interval between the moments when the two contaminant pulses with
diffusivities κ1 = κ − ∆κ/2 and κ2 = κ + ∆κ/2, injected simultaneously at the
beginning of the channel, exit the channel is

∆T ≈
∣∣∣∣∂T∂κ∆κ

∣∣∣∣ =
V
6
L

u

|U (V)− VU ′(V)|
U2(V)

∆κ
κ
. (39)

The width of the contaminant pulse at the time of efflux is proportional to
√
DT , and

hence the time taken for a contaminant pulse to pass the end is proportional to δ, where

δ2 =
DT

U2 = L
τ 2

ξ

D(V)
U3(V)

=
1
6
L

u

b2

κV
D(V)
U3(V)

. (40)
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To maximise separation of two species with close values of diffusion coefficients κj
we need to maximise the difference in the time of efflux relative to the width in time
of the pulses at the efflux. Thus for a given small change in diffusivity, ∆κ > 0, we
wish to maximise

∆T
δ

=

∣∣∣∣∂T∂V ∂V∂κ
∣∣∣∣∆κδ =

V
δ

∣∣∣∣∂T∂V
∣∣∣∣∆κκ =

√
L

6bU
V3/2|U (V)− VU ′(V)|√

D(V)U (V)
∆κ
κ
. (41)

Expect the existence of an optimum cross-flow from the following physical arguments.
Increasing the cross-flow significantly increases the difference in efflux times. On the
other hand, an extremely strong cross-flow would keep both contaminants close to
the plate in a very slow flow for long enough so that longitudinal molecular diffusion
becomes significant. Thus resolution will decrease for an excessively strong cross-
flow. The optimal separation of species with given diffusivities in a channel of fixed
geometry with a fixed fluid flux through it is accomplished when

R(V) =
V3/2|U (V)− VU ′(V)|√

D(V)U (V)

=
6UV2(V − 4)√

(V − 2)(V6 + 36U2(2V2 − 20V + 56))
(42)

is maximised. From dR/dV = 0 we obtain

V6(V2 − 12V + 16
)

= 72U2(3V4 + 52V3 − 336V2 + 912V − 896
)

(43)

with a solution for optimal V of

V0 = 63/4
√
U +

22
3
− 353

27
61/4
√
U

+O
(

1
U

)
. (44)

The leading term of this optimum gives the optimum v0 mentioned in section 1. As
seen from figure 3, for the parameter values listed in table 1 this optimum occurs at
V0 ≈ 613, which corresponds to the relatively high cross-flow velocity v0 ≈ 2.5 ×
10−3 cm/s. Then the optimal regime of two species separation gives

∆T
δ

=
61/8

2

√
3L
b

∆κ
κ
U1/4

[
1− 61/4 7

24
U−1/2 − 1997

384

√
2
3
U−1 +O

(
U−3/2)]. (45)

For the geometry of the channel considered in [14] and parameters given in table 1
the maximum resolution is thus

∆T
δ
≈ 430

∆κ
κ

, (46)

where δ ≈ 1 min. For the regime considered the time necessary for the contaminant
to travel a distance L = 50 cm is T ≈ 14.2 hours – probably too long to be practical.
A suggestion is to reduce the channel length or increase the longitudinal flow speed,
while increasing the cross-flow velocity to be closer to the optimum.
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Figure 3. Function R(V) characterising effectiveness of separation of two different contaminants for
parameters given in table 1.
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Appendix A: Computer algebra handles all the details

Just one of the virtues of this centre manifold approach to modelling is that it is
systematic. This enables relatively straightforward computer programs to be written
to find the centre manifold and the evolution thereon (e.g., [12]).

For this problem the iterative algorithm is implemented by a computer algebra
program written in REDUCE.1 Although there are many details in the program, the
correctness of the results are only determined by driving to zero (line 52) the residual
of the governing differential equation, evaluated on line 45, to the error specified
on line 40. The other details only affect the rate of convergence to the ultimate
answer.

1 % use iteration to form the centre manifold model of shear
2 % dispersion in a channel with a constant cross-flow of
3 % velocity -v.
4 % Flow between y=0 and y=V=(b v0)/k,
5 % rsig=k/nu, K=(v0/u*), u*=-1/2 dp/dx (b k)/(rho nu v0)

1 At the time of writing, information about REDUCE was available from Anthony C. Hearn, RAND, Santa
Monica, CA 90407-2138, USA. E-mail: reduce@rand.org.
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6 % The centre manifold is parameterized with c(x,0,t) such
7 % that the corrections satisfy c’(x,0,t)=0, dc’(x,0,t)/dy=0
8 % formating for printed output
9 on div; off allfac; on revpri; factor df;
10 % ev(y) denotes exp(-y)
11 operator ev;
12 let { df(ev(y),y)=>-ev(y), ev(0)=>1, ev(V)=>ep};
13 ep:=1-1/m;
14 % operator for solvability, where m=1/(1-exp(-V))
15 operator mean;linear mean;
16 let { mean(1,y) => V
17 , mean(y,y) =>Vˆ2/2
18 , mean(yˆ˜q,y) => Vˆ(q+1)/(q+1)
19 , mean(yˆ˜q*ev(y),y)=>-Vˆq*ep+q*mean(yˆ(q-1)*ev(y),y)
20 , mean(y*ev(y),y)=> 1-(1+V)*ep
21 , mean(ev(y),y)=> 1/m };
22 % operator to solve dˆ2h/dyˆ2+dh/dy = rhs
23 operator linv;linear linv;
24 let{linv(1,y) => y-1+ev(y),
25 linv(y,y) => -y+yˆ2/2+1-ev(y),
26 linv(yˆ˜q,y)=>yˆ(q+1)/(q+1)-q*linv(yˆ(q-1),y),
27 linv(ev(y),y)=>-(y+1)*ev(y)+1,
28 linv(y*ev(y),y)=>-(yˆ2/2+y+1)*ev(y)+1,
29 linv(yˆ˜q*ev(y),y)=>-yˆ(q+1)/(q+1)*ev(y)+q*linv(yˆ(q-1)*
30 ev(y),y)};
31 % linear solution and velocity profile
32 depend c,x,t;
33 let df(c,t)=>g;
34 %u:=-2/rsig/V*(y-V*(1-exp(-y*rsig))/(1-exp(-V*rsig)));
35 u:=y*(y-V)*(2*y-6/rsig-V)*rsig/6/V$
36 h:=c*ev(y)$ g:=0$
37 % iteration, for small derivatives d/dx and small reciprocal
38 % Schmidt number
39 let {df(c,x,˜q)=>0 when q>4}$
40 let {rsigˆ2=>0}$
41 factor ev(y)$ factor rsig$ factor df$ factor a$
42 %neglect eˆ(-V) terms
43 m:=1;
44 repeat begin
45 eqn:=df(h,t)+u*df(h,x)-df(h,y)-df(h,y,2)-df(h,x,2)*Kˆ2$
46 % solvability
47 gd:=-mean(eqn,y)*m$
48 g:=g+gd$
49 % concentration field
50 h:=h+linv(eqn+gd*ev(y),y)$
51 showtime;
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52 end until (eqn=0)$
53 %output to the file
54 factor a$ off nat$ on list$ out "out.out"$
55 cmean:=mean(h,y)/V; g; h;
56 shut "out.out"$ on nat$
57 showtime;
58 end$

Appendix B: Weak and moderate cross-flows

For completeness we record here the model for the case of relatively slow cross-
flow, or equivalently of relatively high diffusivity. This provides results for all para-
meters V , not just the large values described earlier.

The non-dimensionalisation used in the main body of this paper is inappropriate
in the case of small cross-flow rates. At higher rates the contaminant is restricted to
the boundary layer, but in low cross-flow it is spread over the channel height. Thus
in the case of weak cross-flows we adopt the following scalings typical of those used
for shear dispersion (e.g., [8,16]):

y∗ =
y

b
, t∗ =

κt

b2 , x∗ =
xκ

ub2 , u∗ =
u

u
, v∗ =

bv

κ
, p∗ =

p

ρu 2σ
. (B.1)

Quantities are scaled: y with the channel width; t with a cross-channel diffusion time,
τ = b2/κ ≈ 1.25×104 s; x with the downstream advection distance in a cross-channel
diffusion time, ξ = uτ ≈ 1.25 × 103 cm; u with the mean downstream velocity; and
v with a cross-stream diffusion speed, κ/b ≈ 4 × 10−4 cm/s. As before, V = v0b/κ
is the main parameter and is used to denote a non-dimensional cross-flow velocity,
though it may well be thought of as an effective channel width, or as the inverse of
the molecular diffusivity.

Then after substituting (B.1) into the Navier–Stokes and continuity equations (4),
(5) and dropping stars the equation for the steady horizontal velocity component u(y)
becomes

−V
σ

∂u

∂y
= 12 +

∂2u

∂y2 , such that u = 0 at y = 0 and y = 1 (B.2)

with the nearly parabolic solution

u(y) =
12σ
V

(
1− e−Vy/σ

1− e−V/σ
− y
)

= y(1− y)

(
6 + (1− 2y)

V
σ

+O
(
V2

σ2

))
. (B.3)
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The advection–diffusion equation for the contaminant becomes

∂c

∂t
+ u

∂c

∂x
− V ∂c

∂y
=
∂2c

∂y2 +
1
U2

∂2c

∂x2 , (B.4)

where U = ub/κ is a downstream Peclet number as before, and with boundary condi-
tions

Vc+
∂c

∂y
= 0 at y = 0 and y = 1. (B.5)

In the absence of any x-variations the steady solution is

c0 = Ce−Vy, (B.6)

where as before C = c(x, 0, t) is the concentration of the contaminant at the lower
plate. The other x-independent solutions, all decaying, are

cn = Cn
[
V sin(nπy)− 2nπ cos(nπy)

]
exp

(
−Vy

2
+ λnt

)
, (B.7)

for n = 1, 2, . . . , where the decay rate is

λn = −V
2

4
− n2π2. (B.8)

For small V the decay is dominated by the second term above due to cross-channel
diffusion. The slowest rate of decay to the centre manifold comes from the n = 1
mode. Using arguments similar to those given in section 3 we deduce that in the
case of small cross-flow rates C1 ∝ 1 and, consequently, the dimensional decay time
is expected to be τ/|λ1| ≈ τ/π2 ≈ 20 min, which is an order of magnitude larger
than that for the strong cross-flows considered earlier. This reaffirms the existence of
an attractive centre manifold for slowly varying solutions, albeit attractive on a larger
time scale.

As before, an iterative procedure was implemented in computer algebra (not
listed) to solve the contaminant transport equations (B.4), (B.5) by finding the centre
manifold and the evolution thereon (22). The resulting expression for the concentration
field is

c=Ce−Vy + 12
∂C

∂x

m− 1
V3

(
1− 1

σ

)(
1− e−Vy(1 + Vy)

)
+
∂C

∂x

y2

V2 e−Vy
[

(6− 3V + 2Vy)

(
1− 1

σ

)
− V

2

2σ
(1− y)2

]
+O

(
∂2C

∂x2 ,σ−2
)
. (B.9)
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The general expressions for the coefficients of the evolution equation (33) are quite
involved and for brevity here we neglect terms inversely proportional to the Schmidt
number σ since it is typically large (σ ≈ 5× 104, for example):

U =
6
V (2m− 1)− 12

V2 +O
(
σ−1), (B.10)

D=
1
U2 + 24m

e−V

V2 − 144m2(2m− 1)
e−V

V3 − 72
4m2e−V − 1

V4

− 720
2m − 1
V5 +

2016
V6 +O

(
σ−1), (B.11)

E =−24m2(2m− 1)
e−V

V3 +
432

5
m2(20m2e−V + 3

)e−V

V4

− 6912m4(2m− 1)
e−2V

V5 − 24192m4 e−2V

V6

− 864(2m − 1)
58m2e−2V + 5

V7 − 5184
48m2e−V − 17

V8

− 642816
2m− 1
V9 +

1672704
V10 +O

(
σ−1), (B.12)

F = 16m2(6m2e−V + 1
)e−V

V4 −
1152

5
m2(2m− 1)

(
15m2e−V + 1

)e−V

V5

+
288
35

m2(2m− 1)
(
168m2(100m2e−V + 21

)
e−V + 37

)e−V

V6

− 1152m2(2m− 1)
(
24m2(15m2e−V − 1

)
e−V − 1

)e−V

V7

− 6912
5

m2(60m2(25m2e−V − 2
)
e−V − 79

)e−V

V8

− 6912m2(2m− 1)
(
630m2e−V + 17

)e−V

V9

− 13824
m2(1806m2e−V + 197)e−V − 33

V10

− 518400(2m − 1)
106m2e−V + 29

V11 − 829440
463m2e−V − 237

V12

− 1208742912
2m− 1
V13 +

2947995648
V14 +O

(
σ−1). (B.13)

These coefficients are plotted in figure 4. All of them eventually decrease in mag-
nitude with increasing cross-flow. The maximum of the effective diffusion coefficient
D is reached at V ≈ 3. Thus the “zone broadening” [6] associated with the dispersion
of the contaminant affects the distribution of the contaminant at a greater degree when
the cross-flow is relatively weak. The fourth order coefficient F is negative for V < 5
and, consequently, equation (33), in contrast to the case of strong cross-flows reported
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Figure 4. The coefficients of the evolution equation (33) as functions of the cross-channel Peclet number
V for the infinite Schmidt number σ.

in section 4, predicts stable (decaying) in time evolution of the average concentration
of the contaminant for all longitudinal wavenumbers.

The small V expansions of expressions (B.9)–(B.13) are

c=C

[
1−Vy +

1
2
V2y2 − 1

6
V3y3

]
+
∂C

∂x
y2
[
−1

2
(y − 1)2 +

Vy
60

(
24y2 − 45y + 20 +

1
σ

(
6y2 − 15y + 10

))
+
V2

120

(
20y4 − 36y3 + 15y2 − 1− 1

σ

(
10y4 − 24y3 + 15y2 + 1

))
+
V3y

1260

(
60y4 − 105y3 + 42y2 − 7 +

1
σ

(
45y4 − 105y3 + 63y2 + 7

))]
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+O
(
∂2C

∂x2 ,σ−2,V4
)

, (B.14)

U = 1− V
2

60
+
V4

2520
− V6

100800
+O

(
σ−1,V8), (B.15)

D=
1
U2 +

1
210

(
1 +

7
60
V2 − 89

7920
V4 +

239
386100

V6
)

+O
(
σ−1,V8), (B.16)

E =
1

69300

(
1 +

1073
1365

V2 − 233
910
V4 +

71629
2570400

V6
)

+O
(
σ−1,V8), (B.17)

F =− 1
2252250

(
1− 26879

85680
V2 +

26341969
68372640

V4 +
1187149277

15041980800
V6
)

+O
(
σ−1,V8). (B.18)

The expansions for large cross-flow V are

c=Ce−Vy +
∂C

∂x
y2e−Vy

[
− 1

2σ
(y − 1)2 +

(
2y − 3
V +

6
V2

)(
1− 1

σ

)]
+O

(
∂2C

∂x2 ,σ−2, e−V
)

, (B.19)

U =
6
V

(
1− 2
V

)
+O

(
σ−1, e−V

)
, (B.20)

D=
1
U2 +

72
V4

(
1− 10
V +

28
V2

)
+O

(
σ−1, e−V

)
, (B.21)

E =−4320
V7

(
1− 102

5V +
744
5V2 −

1936
5V3

)
+O

(
σ−1, e−V

)
, (B.22)

F =
456192
V10

(
1− 725

22V +
4740
11V2 −

29146
11V3 +

71084
11V4

)
+O

(
σ−1, e−V

)
. (B.23)

The above expressions are equivalent to, but appear a little different from, the lead-
ing terms in expressions (30)–(32), (34) and (35) because of the different non-
dimensionalisation. These large V expressions evidently give the behaviour of the
coefficients for non-dimensional cross-flow V bigger than about 5–10.
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